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AC Power Theory From Poynting Theorem: Accurate
Identification of Instantaneous Power Components in

Nonlinear-Switched Circuits
Francisco de León, Senior Member, IEEE, and José Cohen

Abstract—This paper contributes to narrowing the long-
standing theoretical gap with power theory (or “power defini-
tions”) for nonlinear ac switching circuits. The true instantaneous
energy transformation and storage components of ac circuits
are identified from the Poynting Theorem. This paper tackles
the problem of power identification from the most general form
of energy conservation. Therefore, it is no longer necessary to
mathematically “define” powers to fit the engineering solution of a
problem. The identification technique does not present problems
with physical meaning since it is in full agreement with Maxwell’s
Equations. In this paper, the method is applied to the identifica-
tion of the power components of single-phase switched circuits.
Instantaneous energy is decomposed only into energy transformed
(related to active power) and energy stored (related to reactive
power). Examples that have caused physical interpretation prob-
lems with other power theories are presented for illustration and
validation.

Index Terms—Active power, alternating current circuits, energy
restored, energy stored, energy transformed, instantaneous power,
nonlinear circuits, power definitions, power theory, reactive power.

I. INTRODUCTION

P OWER definitions have been the subject of much research
for more than 100 years. At the end of the 19th century,

Steinmetz generated and compiled most of the available knowl-
edge for the analysis of power in ac circuits in [1]. The problems
with the definition of power (and power factor) for unbalanced
circuits were identified as early as 1920 [2]; there are more than
70 pages with discussions on the definition of power. A second
round of discussions took place in 1933 [3] and focused on the
definition of reactive power for nonlinear circuits. Companion
papers and discussions extend to almost 60 pages. The discus-
sions on what power really is in nonlinear and unbalanced cir-
cuits have continued and a great number of papers have been
published on the matter. We have compiled more than 200 pa-
pers on the subject. In 2000, the IEEE published the standard
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1429-2000 on power definitions that has served to further ignite
the discussions [4].

One can learn about the issues and history of power defini-
tions through some of the papers of Emanuel [5]–[9] and Czar-
necki [10]–[16] and their references.

Numerous attempts to establish a power theory that fits some
observable phenomena have produced a gamut of power con-
cepts lacking physical meaning when applied to other cases.
Through mathematical manipulations, many authors have tried
to generalize power definitions applicable to a particular case.
Some authors, for example, Shepherd and Fang [17], have ex-
plicitly admitted the weaknesses of their power theories in re-
gards to physical interpretation.

In this paper, we propose an instantaneous power theory di-
rectly derived from Maxwell’s Equations and specifically from
the Poynting Vector Theorem. Accordingly, only two energy (or
power) components exist: 1) the energy transformed yielding
the active power and 2) the energy that is stored/restored in
the electromagnetic fields that gives birth to the reactive power.
Note that the power components of this paper are not defined
from a particular example, but are accurately computed from
the most fundamental conservation of energy principles. Only
the instantaneous information on terminal voltage and current
are required to fully characterize the power phenomena of a
switching load.

There are publications in favor of [18] and against [19] the
use of the Poynting vector to describe power phenomena in
electrical circuits. For us, the Poynting vector is not merely
a mathematical tool for calculating energy flow as claimed in
[19]. Poynting theorem has been derived from the experimen-
tally macroscopically undisputed Maxwell’s Equations. There-
fore, it offers the best physical description yet available for the
representation of electrical power and energy phenomena.

This paper advocates for the time-domain analysis of powers
for nonlinear circuits. Note that the commonly used quantities
to characterize power such as apparent power , reactive power

, power factor , etc., do not exist in instantaneous terms.
Those quantities are simply definitions that have shown to be
useful and fully meaningful only for linear ac circuits [20]. Ex-
tensions to nonlinear circuits have failed to provide the same
physical meaning.

The contribution of this paper is the proper identification
of the instantaneous energy (and power) components for non-
linear-switched ac circuits. The results are different from the
instantaneous power theories of Fryze [21] and Akagi et al.
[22]. Both of those power theories lack sound physical meaning
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Fig. 1. Application of the Poynting theorem to a source and a nonlinear load.

even for very simple circuits. For example, both theories pro-
duce a reactive power component for cases without energy
storage; see, for example, [23] and [24]. Note that some re-
searchers, relying on classical definitions, believe that reactive
power can occur without changes in the energy stored [16].
However, in physics, power is the rate of change of energy.
When energy does not change, power must be null. Therefore,
we state that any definition of power that cannot be related to
changes in energy must be recognized as physically incorrect,
even if it is useful for engineering purposes.

This paper focuses on nonlinearities in single-phase switched
circuits. Future research will look into other types of nonlinear-
ities and unbalanced multiphase circuits.

II. PHYSICAL INSTANTANEOUS POWER THEORY

In order to be completely general, the flow of power should
be analyzed from Maxwell’s Equations and, in particular, by
means of the Poynting Vector Theorem (PVT) published in 1884
[25]. Fig. 1 shows the application realm of the method: a non-
linear load is fed from a (complex) source. The resulting power
quantities have full physical meaning and are applicable to all
conditions. The most general equation describing the transfer of
power between a source and a load is

(1)

The term on the left-hand side is interpreted as the total power
transferred. The first term on the right-hand side represents the
power that is transformed into other forms of energy, given by
Joule’s Law, and the second term corresponds to the time vari-
ations of the energy stored in the electric and magnetic fields.

Equation (1), when applied to electrical circuits, can be written
as shown in (2) at the bottom of the page.

The instantaneous power transferred from the source to the
load is given by and computed from the product .
The power transformed, represented by the active power ,
must follow Joule’s Law with fidelity. Changes in the energy
stored must be properly characterized by the instantaneous re-
active power in [W]. This instantaneous reactive power can
be inductive and/or capacitive, thus . Equa-
tion (2) is completely general; it applies equally to linear and
nonlinear circuits. In (2), it is also implicit that all other powers
commonly defined for the analysis of nonlinear circuits, such
as fictitious, distortion, scattered, nonactive, etc., have no elec-
tromagnetic existence. Only active and reactive powers exist in
electromagnetic (Maxwell’s Equations) sense.

The term “instantaneous reactive power” is used in this paper
to refer to the rate of change of the instantaneous energy stored.
Since energy can only be stored/restored to/from the so-called
“reactive” elements (inductors and capacitors), rather than in-
venting a new term or awkwardly carrying throughout “rate of
change of energy stored,” we have preferred to be consistent
with the common practice for ac circuits. Note that our instan-
taneous reactive power is different from the Akagi’s instan-
taneous reactive power.

Two cases are analyzed in this paper: 1) when all of the ele-
ments of the circuit are known, and the more general and yet
unresolved case 2) when only the voltage and current at the
load terminals, which is seen as a black box, are known. The
selected examples are periodic ac single-phase circuits; how-
ever, the method is completely general and can be applied even
during the transient state.

A. Instantaneous Power for Known Circuit Elements

The fundamental relationships between current, voltage,
power, and energy for the basic circuit elements are known. An
ideal resistor must dissipate (and not store) power according to
Joule’s Law . When the resistance and the current through
a resistor are known, the instantaneous active power is

(3)

An ideal inductor stores/restores energy in its magnetic field
according to Maxwell as . The instantaneous power of
an inductor must be all reactive power and must be computed
from the time derivative of the instantaneous energy as

(4)

power transferred power transformed energy stored

active power reactive power

(2)
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Fig. 2. Models for the representation of power phenomena in nonlinear circuits.
(a) Series equivalent circuit. (b) Parallel equivalent circuit.

Fig. 3. Time-varying equivalent circuit with identical energy dissipation and
storage characteristics.

Similarly, a capacitor stores/restores energy in its electric
field as . Therefore, the instantaneous reactive power
of a capacitor should be computed from

(5)

B. Identification of Power Components Only From the
Terminal Voltage and Current Measurements

In practice, the circuit elements of a load are not known. The
load consists of a complex arrangement of circuit elements and
switches. The general problem consists in identifying the instan-
taneous active and reactive powers from the knowledge of ter-
minal voltage and current only. The load is seen as a black box
(Fig. 1).

To identify the active and reactive components of power, one
needs to start by establishing a model for the circuit. Two circuit
models are possible for the Poynting theorem: series [26] and
parallel [21]; see Fig. 2. We have selected the series arrange-
ment because for ac circuits, the excitation is the voltage. In
addition, for most practical purposes, the voltage can be consid-
ered to be a perfect sinusoidal function [27]. Therefore, all of
the information about the particularities of the load can only be
obtained from the instantaneous current, which is the response
of the circuit. The current waveshape contains all of the infor-
mation on the energy exchanges between a source and a load,
as confirmed in (10).

A sensible model for switched circuit loads is to assume that
the energy is dissipated by constant resistors and that energy
is stored/restored by constant inductors. Coherent with realistic
switched loads (motors, lamps, power supplies, etc.), our model
does not include a capacitor, but it can be included when needed
(see Section III-G). Fig. 3 describes the underlying identifica-
tion principle of this paper. We compute an equivalent time-
varying circuit comprised of a time-varying resistor in series

with a time-varying inductor. The instantaneous energy dissi-
pated and stored/restored in the equivalent circuit is identical
instantaneously to that of the unknown nonlinear circuit.

From (3) and (4), we obtain the instantaneous power for a
series linear – circuit as

(6)

From basic physics, we know that power is the time derivative
of energy. Consequently, there is no power (consumed or stored/
restored) if energy does not change with time. Therefore, the
instantaneous energy can be computed from the integral of the
instantaneous power as

(7)
In the case of a switched electrical circuit, the resistance

and inductance remain constant between switching operations.
Thus, and can be taken out of the integral and derivatives,
yielding

(8)

and

(9)

We have added a subindex to and to indicate that they
are constant between switching operations, but are allowed to
have a finite number of values in the study period. Equations (8)
and (9) form a set of linearly independent equations, where
and are the unknowns, given by

(10)

A proof that (8) and (9) are linearly independent functions is
given in the Appendix. Equation (9) can be seen mathematically
as a moment of (8). However, this paper is centered in physics
rather than in math.

Once and are computed from (10), one can use (3)
and (4) to obtain the instantaneous power dissipation and power
storage components. These components are consistent with
physics since they are extracted from the power and energy
equations only. This is a clear distinction with all available
methods that create new power definitions to serve engineering
purposes. See, for example, [4], where a collection of powers is
defined mathematically and a physical meaning is sometimes
not found [8].

Note that the matrix in (10) is only a function of the in-
stantaneous current , its time derivatives, and integrals. The
voltage enters, multiplied by the current, only in the right-hand
term given by and . This indicates that all of the in-
formation of the energy phenomena in a circuit can be obtained
from the characteristics of the instantaneous current.

For the numerical solution of (10), one must rely on, easy to
obtain, digital measurements of the instantaneous voltage
and current at the load terminals. Assuming that current and
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Fig. 4. Instantaneous current and voltage for a linear �–� circuit.

Fig. 5. Calculated results for the solution of (11) for an �–� circuit.

Fig. 6. Instantaneous active and reactive powers corresponding to the signals
of Fig. 4.

voltage are measured with a constant sampling rate , (10)
becomes

(11)
The discrete power and energy functions (right-hand side) are
computed from

(12)

and

(13)

All of the elements in (11) and the solution for and can
be conveniently obtained numerically. In this paper, we have
used commercially available computing packages (MathCAD
and Matlab) for all numerical calculations using built-in func-
tions. Note that one needs to solve the matrix (11) for each
sample . Thus, we identify a pair of and values for
each sample, and physics takes care of the variations.

III. ILLUSTRATION EXAMPLES

Several examples are used to illustrate the application and va-
lidity of the method. Equation (11) is solved for each discretized
(in time) point of voltage and current measurement at
the load terminals.

A. Linear R-L Circuit

This first example is intended to explain the calculation
method. Consider that the measured current and voltage at the
terminals of a linear ac circuit are given in Fig. 4. The mea-
surements correspond to a series linear – circuit ( ;

8 mH) with

(14)

where

We have solved the system of (11) for every . Fig. 5 shows
the results for the entire study time. One can appreciate that the
method perfectly identifies the values of the resistive and induc-
tive components. Once and are known, we use (3) and
(4) to compute the instantaneous power consumed and rate of
change of the stored energy; see Fig. 6. One can see that and

are double frequency functions in accordance with physics.
is always greater than zero, demonstrating that energy can

only be consumed (and not returned) to the source from a pas-
sive circuit. is a symmetric sinusoid wave with zero av-
erage, showing that all stored energy in the inductor is restored
to the source.

The condition number of the matrix in (11) as a function of
time is plotted in Fig. 7. For a sampling rate of 200 s
(100 points per cycle), the maximum occurs at 3.6 ms with
a value of . Although the matrix is ill-conditioned in
regions using a sufficient number of significant digits for the
calculations, it is possible to obtain accurate results. The corre-
sponding equation for the worst case at 3.6 ms is

(15)

Experimentation varying the sampling rate showed that the
condition number increases as the sampling rate increases. The
maximum condition number for 100 s (200 points per
cycle) is 6.76 10 . For 40 s (500 points per cycle),
the maximum condition number becomes 5.4 10 . For
20 s (1000 points per cycle), the maximum condition number
is 5.71 10 . Accurate identification results were always ob-
tained for all sampling rates.

B. Controlled Rectifier Feeding a Resistive Load

The case of a controlled rectifier has been used to discredit
several of the available power theories [22]. Some available the-
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Fig. 7. Variation of the condition number with time for the family of matrices
corresponding to Example A: Linear �– � circuit (signals of Fig. 4).

Fig. 8. Controlled rectifier feeding a resistive load.

Fig. 9. Current and voltage for a controlled rectifier feeding a resistive load.

Fig. 10. Calculated results for the solution on (11) for a controlled rectifier
feeding a resistive load.

ories predict the existence of reactive power in a circuit inca-
pable of storing energy [24]. Consider the circuit of Fig. 8, with

0.5 , where the firing times (or angles) have been adjusted
to give the current shown in Fig. 9. The results of the identifi-
cation process are shown in Fig. 10. One can appreciate that the
identification is visibly correct. The computed inductance is in
the order of 10 due to roundoff error.

The method properly computes the correct power dissipated
with (3); see Fig. 11. Following the laws of

physics, is equal to over the entire period. This means
that all power supplied by the source is consumed by the load
and there is no reactive power when there are no elements in
the circuit capable of storing energy. This is also corroborated

Fig. 11. Instantaneous active and reactive powers corresponding to the voltage
and current signals of Fig. 9.

Fig. 12. Voltage and current for a half-wave rectifier feeding an �–� load.

Fig. 13. Calculated results for the solution on equation (11) for a half-wave
rectifier feeding an �–� load.

with the fact that 0 when computed with (4) since
10 . For the periods where the current is zero, re-

flecting reality, (11) does not exist and, thus, there is no possible
solution.

C. Half-Wave Rectifier Feeding an R-L Load

Fig. 12 shows the input voltage and current drawn by a half-
wave rectifier feeding an – series load; where
and 0.8 mH. The results of the identification procedure
of (11) are shown in Fig. 13. One can see that the method com-
putes fairly accurately the correct values for and . A spike
caused by the abrupt chopping of the current at zero crossing
at the end of the conduction time has been filtered out. Spikes
present no implementation complications because they can be
easily identified numerically since the derivative becomes very
large at discontinuity points. Fig. 14 shows the active and reac-
tive components of power computed from (3) and (4). As before,
the results are in full agreement with physics: and the
net area under , its integral over a period, is zero.
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Fig. 14. Instantaneous active and reactive powers corresponding to the voltage
and current signals of Fig. 12.

Fig. 15. Switching �–� branches with the same time constant.

Fig. 16. Terminal voltage and current for the circuit of Fig. 15.

Fig. 17. Results of the identification process for the circuit of Fig. 15.

D. Several Parallel Controlled Rectifiers Feeding R-L Loads
With the Same Time Constant

The next example consists of a circuit with four – par-
allel-switched branches (with different switching times) as il-

Fig. 18. Instantaneous active ���� and reactive ���� powers for the circuit of
Fig. 15. (a) Active power. (b) Reactive power.

lustrated in Fig. 15. Note that although the resistors and induc-
tors have different values, the time constant of all the branches is
the same 3 ms). Fig. 16 shows the applied voltage and
the resulting current obtained with time-domain simulations to
reach steady state. There are 1000 points per cycle in the simula-
tion. We have used the terminal voltage and the (computed) ter-
minal current in (11)–(13) to identify the circuit elements. The
results of the identification technique are shown in Fig. 17. The
resistance and inductance computed with the method are equal
to the equivalents when reducing the parallel circuits, given by

Once and are known, the instantaneous active and
reactive powers and can be easily obtained from (3)
and (4) (see Fig. 18). One can appreciate that in previous exam-
ples and in perfect agreement with physics, the instantaneous
reactive power is always positive (or zero) and the instan-
taneous reactive power has a zero average.

E. General Case—Two Parallel R-L Loads With a Different
Time Constant

The next example consists of a circuit with two – branches
with a different time constant as shown in Fig. 19. The current
and voltage shapes are given in Fig. 20. The results of the iden-
tification are presented in Fig. 21. When the switched branch is
off, the method properly identifies the values of the fixed branch.
For the transient region, when both branches are on, our method
obtains time-varying (not constant as before) equivalents
and . This is consistent with theoretical expectations be-
cause it is not possible to obtain a constant parameter equivalent
circuit for an – -switched circuit when the time constants are
different [28]. During a transient, there is no completely accu-
rate methodology of combining two or more parallel circuits
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Fig. 19. Two parallel branches with different time constants.

Fig. 20. Terminal voltage and current for the circuit of Fig. 19.

Fig. 21. Results of the identification process for the circuit of Fig. 19.

with different into a single circuit with a constant value of
. Fig. 22 shows the instantaneous reactive and active power

components. A similar physical interpretation as with previous
examples can be given. shows consumption with no energy
returned to the source, while has zero average, indicating
that all energy that is stored in the inductors is restored to the
source.

F. Nonsinusoidal Voltage Excitation

The voltage in a power system is, for most practical cases, si-
nusoidal [27]. However, to demonstrate the generality of method
proposed in this paper, a case with a large third voltage har-
monic component is presented. Consider a series – circuit
( ; ) fed by the following voltage:

(16)

Fig. 23 shows the voltage and current waveshapes. The results
of the identification are presented in Fig. 24. One can see that
the identification of and is very good. The instantaneous
active and reactive power components are shown in Fig. 25. As

Fig. 22. Instantaneous reactive ���� and active ���� power components for the
circuit of Fig. 19.

Fig. 23. Nonsinusoidal voltage excitation and corresponding current.

Fig. 24. Results of the identification process applied to the signals of Fig. 23.

before, , the instantaneous power consumed, is always pos-
itive or zero, while , the instantaneous reactive power, has
zero average.

G. Capacitive Load

The last example consists of a linear – series load (
; 4 mF). The terminal voltage and current are (see

Fig. 26)
(17)

where
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Fig. 25. Instantaneous active and reactive powers for the signals of Fig. 23.

Fig. 26. Terminal voltage and current for the capacitive circuit.

Since most loads in a power system are inductive, the identi-
fication technique proposed in this paper was written for induc-
tive loads. However, the underlying theory (Poynting Theorem)
is completely general and can be applied to any load. The best
indication of the presence of a capacitive load is when the com-
puted inductance is negative. This is because for a given current,
the energy stored instantaneously in an inductor is in the oppo-
site direction as the instantaneous energy stored in a capacitor.
The equivalent capacitor can be computed by combining (4) and
(5) as

(18)
yielding

(19)

For linear cases, (19) reduces to .
Fig. 27 shows the results of the application of (11)–(13) to the
voltage and current shapes illustrated in Fig. 26. One can see
that is identified directly and that the corresponding is
negative 2.533 mH). Using (19), we can obtain the proper
numerical value for the capacitor .

In Fig. 29, the instantaneous active and reactive powers are
presented. The active power component is obtained from
(3) as . The reactive power can be computed from
(18) or using (4) and (5) as follows (they are all equivalent):

(20a)

Fig. 27. Results of the identification process for the waveshapes of Fig. 26.

Fig. 28. Results of the identification process for the waveshapes of Fig. 26.

Fig. 29. Results of the identification process for the waveshapes of Fig. 26.

(20b)

IV. CONCLUSION

This paper contributes to narrowing the long-standing theo-
retical gap with power theory (or “power definitions”) for non-
linear circuits. Based only on terminal measurements of instan-
taneous voltage and current, the true (in the Maxwell sense) en-
ergy transformation and storage components of ac circuits have
been identified from the Poynting Vector Theorem.

In this paper, the method has been applied successfully to the
identification of a large number of switched circuits. Instanta-
neous energy is decomposed only into energy transformed (re-
lated to active power) and energy stored (related to “reactive”
power), thereby eliminating any physical interpretation issues.

The system identification method, using a function and its
integral, has applications beyond the identification of elements
of ac circuits.

APPENDIX

LINEAR INDEPENDENCE OF (8) AND (9)

Let and be functions defined over an interval as

(21)

(22)
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Fig. 30. Wronskian of (8) and (9) for the linear circuit �–� of Example A.

The instantaneous power and energy and of elec-
trical circuits are differentiable functions in the intervals be-
tween switching. If two functions are linearly dependent for
every in the interval, their Wronskian

(23)

Consequently, if for some in the interval , the Wronskian
has a value , then the functions and are
linearly independent [29].

In ac electrical circuits, the instantaneous current is a pe-
riodic function and its Fourier series exists. Therefore, it suf-
fices to show that for , the Wronskian
is different than zero for some to prove that (8) and (9) are
linearly independent. Fig. 30 shows the variation of the Wron-
skian with respect to time for the – circuit of Example1
( ; 8 mH). There are 100 samples in Fig. 30. We
can see that the Wronskian is different than zero at every in the
period. Therefore, functions (8) and (9) are linearly independent
at every .
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